
Chapter 3
Operating Systems Security

Contents

3.1 Operating Systems Concepts 114
3.1.1 The Kernel and Input/Output 115
3.1.2 Processes . 116
3.1.3 The Filesystem . 121
3.1.4 Memory Management 124
3.1.5 Virtual Machines 128

3.2 Process Security . 130
3.2.1 Inductive Trust from Start to Finish 130
3.2.2 Monitoring, Management, and Logging 132

3.3 Memory and Filesystem Security 136
3.3.1 Virtual Memory Security 136
3.3.2 Password-Based Authentication 137
3.3.3 Access Control and Advanced File Permissions . . 140
3.3.4 File Descriptors . 146
3.3.5 Symbolic Links and Shortcuts 148

3.4 Application Program Security 149
3.4.1 Compiling and Linking 149
3.4.2 Simple Buffer Overflow Attacks 150
3.4.3 Stack-Based Buffer Overflow 152
3.4.4 Heap-Based Buffer Overflow Attacks 159
3.4.5 Format String Attacks 162
3.4.6 Race Conditions 163

3.5 Exercises . 166

113

114 Chapter 3. Operating Systems Security

3.1 Operating Systems Concepts

An operating system (OS) provides the interface between the users of a
computer and that computer’s hardware. In particular, an operating system
manages the ways applications access the resources in a computer, includ-
ing its disk drives, CPU, main memory, input devices, output devices, and
network interfaces. It is the “glue” that allows users and applications
to interact with the hardware of a computer. Operating systems allow
application developers to write programs without having to handle low-
level details such as how to deal with every possible hardware device,
like the hundreds of different kinds of printers that a user could possibly
connect to his or her computer. Thus, operating systems allow application
programs to be run by users in a relatively simple and consistent way.

Operating systems handle a staggering number of complex tasks, many
of which are directly related to fundamental security problems. For ex-
ample, operating systems must allow for multiple users with potentially
different levels of access to the same computer. For instance, a university
lab typically allows multiple users to access computer resources, with some
of these users, for instance, being students, some being faculty, and some
being administrators that maintain these computers. Each different type of
user has potentially unique needs and rights with respect to computational
resources, and it is the operating system’s job to make sure these rights and
needs are respected while also avoiding malicious activities.

In addition to allowing for multiple users, operating systems also allow
multiple application programs to run at the same time, which is a concept
known as multitasking. This technique is extremely useful, of course, and
not just because we often like to simultaneously listen to music, read email,
and surf the Web on the same machine. Nevertheless, this ability has an
implied security need of protecting each running application from interfer-
ence by other, potentially malicious, applications. Moreover, applications
running on the same computer, even if they are not running at the same
time, might have access to shared resources, like the filesystem. Thus, the
operating system should have measures in place so that applications can’t
maliciously or mistakenly damage resources needed by other applications.

These fundamental issues have shaped the development of operating
systems over the last decades. In this chapter, we explore the topic of
operating system security, studying how operating systems work, how they
are attacked, and how they are protected. We begin our study by discussing
some of the fundamental concepts present in operating systems.

3.1. Operating Systems Concepts 115

3.1.1 The Kernel and Input/Output

The kernel is the core component of the operating system. It handles the
management of low-level hardware resources, including memory, proces-
sors, and input/output (I/O) devices, such as a keyboard, mouse, or video
display. Most operating systems define the tasks associated with the kernel
in terms of a layer metaphor, with the hardware components, such as the
CPU, memory, and input/output devices being on the bottom, and users
and applications being on the top.

The operating system sits in the middle, split between its kernel, which
sits just above the computer hardware, and nonessential operating system
services (like the program that prints the items in a folder as pretty icons),
which interface with the kernel. The exact implementation details of the
kernel vary among different operating systems, and the amount of respon-
sibility that should be placed on the kernel as opposed to other layers of
the operating system has been a subject of much debate among experts. In
any case, the kernel creates the environment in which ordinary programs,
called userland applications, can run. (See Figure 3.1.)

��������	
��
����

���������
�	����

���	
��
����

������������	�

������������������

�����

Userland

Operating System

Hardware

Figure 3.1: The layers of a computer system.

Input/Output Devices

The input/output devices of a computer include things like its keyboard,
mouse, video display, and network card, as well as other more optional
devices, like a scanner, Wi-Fi interface, video camera, USB ports, and other
input/output ports. Each such device is represented in an operating system
using a device driver, which encapsulates the details of how interaction
with that device should be done. The application programmer interface

116 Chapter 3. Operating Systems Security

(API), which the device drivers present to application programs, allows
those programs to interact with those devices at a fairly high level, while
the operating system does the “heavy lifting” of performing the low-level
interactions that make such devices actually work. We discuss some of
the security issues related to input/output devices in the previous chapter
(Section 2.4.2), including acoustic emissions and keyloggers, so we will
instead focus here on the operating system calls that are needed to make
input/output and other hardware interactions possible.

System Calls

Since user applications don’t communicate directly with low-level hard-
ware components, and instead delegate such tasks to the kernel, there
must be a mechanism by which user applications can request the kernel to
perform actions on their behalf. In fact, there are several such mechanisms,
but one of the most common techniques is known as the system call, or
syscall for short. System calls are usually contained in a collection of
programs, that is, a library such as the C library (libc), and they provide
an interface that allows applications to use a predefined series of APIs
that define the functions for communicating with the kernel. Examples
of system calls include those for performing file I/O (open, close, read,
write) and running application programs (exec). Specific implementation
details for system calls depend on the processor architecture, but many
systems implement system calls as software interrupts—requests by the
application for the processor to stop the current flow of execution and
switch to a special handler for the interrupt. This process of switching
to kernel mode as a result of an interrupt is commonly referred to as a
trap. System calls essentially create a bridge by which processes can safely
facilitate communication between user and kernel space. Since moving into
kernel space involves direct interaction with hardware, an operating system
limits the ways and means that applications interact with its kernel, so as
to provide both security and correctness.

3.1.2 Processes

The kernel defines the notion of a process, which is an instance of a program
that is currently executing. The actual contents of all programs are initially
stored in persistent storage, such as a hard drive, but in order to actually be
executed, the program must be loaded into random-access memory (RAM)
and uniquely identified as a process. In this way, multiple copies of the
same program can be run by having multiple processes initialized with

3.1. Operating Systems Concepts 117

the same program code. For example, we could be running four different
instances of a word processing program at the same time, each in a different
window.

The kernel manages all running processes, giving each a fair share of the
computer’s CPU(s) so that the computer can execute the instructions for all
currently running applications. This time slicing capability is, in fact, what
makes multitasking possible. The operating system gives each running
process a tiny slice of time to do some work, and then it moves on to the
next process. Because each time slice is so small and the context switching
between running processes happens so fast, all the active processes appear
to be running at the same time to us humans (who process inputs at a much
slower rate than computers).

Users and the Process Tree

As mentioned above, most modern computer systems are designed to
allow multiple users, each with potentially different privileges, to access
the same computer and initiate processes. When a user creates a new
process, say, by making a request to run some program, the kernel sees this
as an existing process (such as a shell program or graphical user interface
program) asking to create a new process. Thus, processes are created by a
mechanism called forking, where a new process is created (that is, forked)
by an existing process. The existing process in this action is known as the
parent process and the one that that is being forked is known as the child
process.

On most systems, the new child process inherits the permissions of its
parent, unless the parent deliberately forks a new child process with lower
permissions than itself. Due to the forking mechanism for process creation,
which defines parent-child relationships among processes, processes are or-
ganized in a rooted tree, known as the process tree. In Linux, the root of this
tree is the process init, which starts executing during the boot process right
after the kernel is loaded and running. Process init forks off new processes
for user login sessions and operating system tasks. Also, init becomes the
parent of any “orphaned” process, whose parent has terminated.

Process IDs

Each process running on a given computer is identified by a unique non-
negative integer, called the process ID (PID). In Linux, the root of the
process tree is init, with PID 0. In Figure 3.2, we show an example of the
process tree for a Linux system, in both a compact form and an expanded
form.

118 Chapter 3. Operating Systems Security

init-+-Xprt
|-6*[artsd]
|-atd
|-automount---22*[{automount}]
|-avahi-daemon---avahi-daemon
|-3*[bonobo-activati---{bonobo-activati}]
|-console-kit-dae---63*[{console-kit-dae}]
|-cron
|-cupsd
|-dbus-daemon
|-dhclient3
|-dirmngr
|-esd
|-gdm---gdm-+-Xorg
| `-gdmlogin
|-6*[getty]
|-gmond---6*[{gmond}]
|-hald---hald-runner-+-hald-addon-acpi
| |-hald-addon-inpu
| `-hald-addon-stor
|-hcid
|-hogd
|-inetd
|-klogd
|-lisa
|-master-+-pickup
| `-qmgr
|-monit---{monit}
|-nscd---8*[{nscd}]
|-ntpd
|-portmap
|-privoxy
|-rpc.statd
|-rwhod---rwhod
|-sshd---sshd---sshd---tcsh---pstree
|-syslogd
|-system-tools-ba
|-udevd
|-vmnet-bridge
|-2*[vmnet-dhcpd]
|-vmnet-natd
|-2*[vmnet-netifup]
|-xfs
`-zhm

init(1)-+-Xprt(1166)
|-artsd(29493,shitov)
|-artsd(18719,accharle)
|-artsd(25796,mdamiano)
|-artsd(16834,mchepkwo)
|-artsd(25213,xl1)
|-artsd(27782,wc9)
|-atd(4031,daemon)
|-automount(3434)-+-{automount}(3435)
| |-{automount}(3436)
| |-{automount}(3439)
| |-{automount}(3442)
| |-{automount}(3443)
| |-{automount}(3444)
| |-{automount}(3445)
| |-{automount}(3446)
| |-{automount}(3447)
| |-{automount}(3448)
| |-{automount}(3449)
| |-{automount}(3450)
| |-{automount}(3451)
| |-{automount}(3452)
| |-{automount}(3453)
| |-{automount}(3454)
| |-{automount}(3455)
| |-{automount}(3456)
| |-{automount}(3457)
| |-{automount}(3458)
| |-{automount}(3459)
| `-{automount}(3460)
|-avahi-daemon(2772,avahi)---avahi-daemon(2773)
|-bonobo-activati(6261,pmartada)---{bonobo-activati}(6262)
|-bonobo-activati(2059,jlalbert)---{bonobo-activati}(2060)
|-bonobo-activati(2684,bcrow)---{bonobo-activati}(2690)
|-console-kit-dae(31670)-+-{console-kit-dae}(31671)
| |-{console-kit-dae}(31673)
| |-{console-kit-dae}(31674)
| |-{console-kit-dae}(31675)
| |-{console-kit-dae}(31676)
| |-{console-kit-dae}(31677)
| |-{console-kit-dae}(31679)
| |-{console-kit-dae}(31680)

…

(a) (b)

Figure 3.2: The tree of processes in a Linux system produced by the pstree
command. The process tree is visualized by showing the root on the
upper left-hand corner, with children and their descendants to the right
of it. (a) Compact visualization where children associated with the same
command are merged into one node. For example, 6*[artsd] indicates that
there are six children process associated with artsd, a service that manages
access to audio devices. (b) Fragment of the full visualization, which also
includes process PIDs and users.

Process Privileges

To grant appropriate privileges to processes, an operating system associates
information about the user on whose behalf the process is being executed
with each process. For example, Unix-based systems have an ID system
where each process has a user ID (uid), which identifies the user associated
with this process, as well as a group ID (gid), which identifies a group of
users for this process. The uid is a number between 0 and 32,767 (0x7fff in

3.1. Operating Systems Concepts 119

hexadecimal notation) that uniquely identifies each user. Typically, uid 0 is
reserved for the root (administrator) account. The gid is a number within
the same range that identifies a group the user belongs to. Each group
has a unique identifier, and an administrator can add users to groups to
give them varying levels of access. These identifiers are used to determine
what resources each process is able to access. Also, processes automatically
inherit the permissions of their parent processes.

In addition to the uid and gid, processes in Unix-based systems also
have an effective user ID (euid). In most cases, the euid is the same as the
uid—the ID of the user executing the process. However, certain designated
processes are run with their euid set to the ID of the application’s owner,
who may have higher privileges than the user running the process (this
mechanism is discussed in more detail in Section 3.3.3). In these cases, the
euid generally takes precedence in terms of deciding a process’s privileges.

Inter-Process Communication

In order to manage shared resources, it is often necessary for processes to
communicate with each other. Thus, operating systems usually include
mechanisms to facilitate inter-process communication (IPC). One simple
technique processes can use to communicate is to pass messages by reading
and writing files. Files are are readily accessible to multiple processes as
a part of a big shared resource—the filesystem—so communicating this
way is simple. Even so, this approach proves to be inefficient. What if
a process wishes to communicate with another more privately, without
leaving evidence on disk that can be accessed by other processes? In
addition, file handling typically involves reading from or writing to an
external hard drive, which is often much slower than using RAM.

Another solution that allows for processes to communicate with each
other is to have them share the same region of physical memory. Processes
can use this mechanism to communicate with each other by passing mes-
sages via this shared RAM memory. As long as the kernel manages the
shared and private memory spaces appropriately, this technique can allow
for fast and efficient process communication.

Two additional solutions for process communication are known as pipes
and sockets. Both of these mechanisms essentially act as tunnels from
one process to another. Communication using these mechanisms involves
the sending and receiving processes to share the pipe or socket as an in-
memory object. This sharing allows for fast messages, which are produced
at one end of the pipe and consumed at the other, while actually being in
RAM memory the entire time.

120 Chapter 3. Operating Systems Security

Signals

Sometimes, rather than communicating via shared memory or a shared
communication channel, it is more convenient to have a means by which
processes can send direct messages to each other asynchronously. Unix-
based systems incorporate signals, which are essentially notifications sent
from one process to another. When a process receives a signal from another
process, the operating system interrupts the current flow of execution of
that process, and checks whether that process has an appropriate signal
handler (a routine designed to trigger when a particular signal is received).
If a signal handler exists, then that routine is executed; if the process does
not handle this particular signal, then it takes a default action. Terminating
a nonresponsive process on a Unix system is typically performed via sig-
nals. Typing Ctrl-C in a command-line window sends the INT signal to the
process, which by default results in termination.

Remote Procedure Calls

Windows supports signals in its low-level libraries, but does not make
use of them in practice. Instead of using signals, Windows relies on the
other previously mentioned techniques and additional mechanisms known
as remote procedure calls (RPC), which essentially allow a process to call
a subroutine from another process’s program. To terminate a process,
Windows makes use of a kernel-level API appropriately named Termi-
nateProcess(), which can be called by any process, and will only execute
if the calling process has permission to kill the specified target.

Daemons and Services

Computers today run dozens of processes that run without any user in-
tervention. In Linux terminology, these background processes are known
as daemons, and are essentially indistinguishable from any other process.
They are typically started by the init process and operate with varying levels
of permissions. Because they are forked before the user is authenticated,
they are able to run with higher permissions than any user, and survive the
end of login sessions. Common examples of daemons are processes that
control web servers, remote logins, and print servers.

Windows features an equivalent class of processes known as services.
Unlike daemons, services are easily distinguishable from other processes,
and are differentiated in monitoring software such as the Task Manager.

3.1. Operating Systems Concepts 121

3.1.3 The Filesystem

Another key component of an operating system is the filesystem, which is
an abstraction of how the external, nonvolatile memory of the computer
is organized. Operating systems typically organize files hierarchically into
folders, also called directories.

Each folder may contain files and/or subfolders. Thus, a volume, or
drive, consists of a collection of nested folders that form a tree. The topmost
folder is the root of this tree and is also called the root folder. Figure 3.3
shows a visualization of a file system as a tree.

Figure 3.3: A filesystem as a tree, displayed by Windows Explorer.

File Access Control

One of the main concerns of operating system security is how to delineate
which users can access which resources, that is, who can read files, write
data, and execute programs. In most cases, this concept is encapsulated in
the notion of file permissions, whose specific implementation depends on
the operating system. Namely, each resource on disk, including both data
files and programs, has a set of permissions associated with it.

122 Chapter 3. Operating Systems Security

File Permissions

File permissions are checked by the operating system to determine if a
file is readable, writable, or executable by a user or group of users. This
permission data is typically stored in the metadata of the file, along with
attributes such as the type of file. When a process attempts to access a
file, the operating system checks the identity of the process and determines
whether or not access should be granted, based on the permissions of the
file.

Several Unix-like operating systems have a simple mechanism for file
permissions known as a file permission matrix. This matrix is a represen-
tation of who is allowed to do what to the file, and contains permissions
for three classes, each of which features a combination of bits. Files have
an owner, which corresponds to the uid of some user, and a group, which
corresponds to some group id.

First, there is the owner class, which determines permissions for the
creator of the file. Next is the group class, which determines permissions
for users in the same group as the file. Finally, the others class determines
permissions for users who are neither the owner of the file nor in the same
group as the file.

Each of these classes has a series of bits to determine what permissions
apply. The first bit is the read bit, which allows users to read the file. Second
is the write bit, which allows users to alter the contents of the file. Finally,
there is the execute bit, which allows users to run the file as a program
or script, or, in the case of a directory, to change their current working
directory to that one. An example of a file permission matrix for a set of
files in a directory is shown in Figure 3.4.

Figure 3.4: An example of the permission matrices for several files on a Unix
system, using the ls -l command. The Floats.class file has read, write,
and execute rights for its owner, goodrich, and nonowners alike. The
Floats.java file, on the other hand, is readable by everyone, writeable only
by its owner, and no one has execute rights. The file, Test.java, is only
readable and writable by its owner—all others have no access rights.

3.1. Operating Systems Concepts 123

Unix File Permissions

The read, write, and execute bits are implemented in binary, but it is
common to express them in decimal notation, as follows: the execute bit
has weight 1, the write bit has weight 2, and read bit has weight 4. Thus,
each combination of the 3 bits yields a unique number between 0 and 7,
which summarizes the permissions for a class. For example, 3 denotes that
both the execute and write bits are set, while 7 denotes that read, write, and
execute are all set.

Using this decimal notation, the entire file permission matrix can be
expressed as three decimal numbers. For example, consider a file with a
permission matrix of 644. This denotes that the owner has permission to
read and write the file (the owner class is set to 6), users in the same group
can only read (the group class is set to 4), and other users can only read (the
others class is set to 4). In Unix, file permissions can be changed using the
chmod command to set the file permission matrix, and the chown command
to change the owner or group of a file. A user must be the owner of a file to
change its permissions.

Folders also have permissions. Having read permissions for a folder
allows a user to list that folder’s contents, and having write permissions for
a folder allows a user to create new files in that folder. Unix-based systems
employ a path-based approach for file access control. The operating system
keeps track of the user’s current working directory. Access to a file or
directory is requested by providing a path to it, which starts either at the
root directory, denoted with /, or at the current working directory. In
order to get access, the user must have execute permissions for all the
directories in the path. Namely, the path is traversed one directory at the
time, beginning with the start directory, and for each such directory, the
execute permission is checked.

As an example, suppose Bob is currently accessing directory
/home/alice, the home directory of Alice (his boss), for which he has execute
permission, and wants to read file

/home/alice/administration/memos/raises.txt.
When Bob issues the Unix command

cat administration/memos/raises.txt
to view the file, the operating system first checks if Bob has execute per-
mission on the first folder in the path, administration. If so, the operating
system checks next whether Bob has execute permissions on the next folder,
memos. If so, the operating system finally checks whether Bob has read
permission on file raises.txt. If Bob does not have execute permission on
administration or memos, or does not have read permission on raises.txt,
access is denied.

124 Chapter 3. Operating Systems Security

3.1.4 Memory Management

Another service that an operating system provides is memory management,
that is, the organization and allocation of the memory in a computer. When
a process executes, it is allocated a region of memory known as its address
space. The address space stores the program code, data, and storage that
a process needs during its execution. In the Unix memory model, which is
used for most PCs, the address space is organized into five segments, which
from low addresses to high, are as follows. (See Figure 3.5.)

1. Text. This segment contains the actual machine code of the program,
which was compiled from source code prior to execution.

2. Data. This segment contains static program variables that have been
initialized in the source code, prior to execution.

3. BSS. This segment, which is named for an antiquated acronym for
block started by symbol, contains static variables that are uninitial-
ized (or initialized to zero).

4. Heap. This segment, which is also known as the dynamic segment,
stores data generated during the execution of a process, such as
objects created dynamically in an object-oriented program written in
Java or C++.

5. Stack. This segment houses a stack data structure that grows down-
wards and is used for keeping track of the call structure of subroutines
(e.g., methods in Java and functions in C) and their arguments.

Stack

Dynamic

BSS

Data

Text

Figure 3.5: The Unix memory model.

3.1. Operating Systems Concepts 125

Memory Access Permissions

Each of the five memory segments has its own set of access permissions
(readable, writable, executable), and these permissions are enforced by the
operating system. The text region is usually read-only, for instance, because
it is generally not desirable to allow the alteration of a program’s code
during its execution. All other regions are writable, because their contents
may be altered during a program’s execution.

An essential rule of operating systems security is that processes are not
allowed to access the address space of other processes, unless they have
explicitly requested to share some of that address space with each other. If
this rule were not enforced, then processes could alter the execution and
data of other processes, unless some sort of process-based access control
system were put in place. Enforcing address space boundaries avoids many
serious security problems by protecting processes from changes by other
processes.

In addition to the segmentation of address space in order to adhere to
the Unix memory model, operating systems divide the address space into
two broad regions: user space, where all user-level applications run, and
kernel space, which is a special area reserved for core operating system
functionality. Typically, the operating system reserves a set amount of
space (one gigabyte, for example), at the bottom of each process’s address
space, for the kernel, which naturally has some of the most restrictive access
privileges of the entire memory.

Contiguous Address Spaces

As described above, each process’s address space is a contiguous block of
memory. Arrays are indexed as contiguous memory blocks, for example, so
if a program uses a large array, it needs an address space for its data that is
contiguous. In fact, even the text portion of the address space, which is used
for the computer code itself, should be contiguous, to allow for a program
to include instructions such as “jump forward 10 instructions,” which is a
natural type of instruction in machine code.

Nevertheless, giving each executing process a contiguous slab of real
memory would be highly inefficient and, in some cases, impossible. For
example, if the total amount of contiguous address space is more than the
amount of memory in the computer, then it is simply not possible for all
executing processes to get a contiguous region of memory the size of its
address space.

126 Chapter 3. Operating Systems Security

Virtual Memory

Even if all the processes had address spaces that could fit in memory, there
would still be problems. Idle processes in such a scenario would still retain
their respective chunks of memory, so if enough processes were running,
memory would be needlessly scarce.

To solve these problems, most computer architectures incorporate a
system of virtual memory, where each process receives a virtual address
space, and each virtual address is mapped to an address in real memory
by the virtual memory system. When a virtual address is accessed, a
hardware component known as the memory management unit looks up the
real address that it is mapped to and facilitates access. Essentially, processes
are allowed to act as if their memory is contiguous, when in reality it may be
fragmented and spread across RAM, as depicted in Figure 3.6. Of course,
this is useful, as it allows for several simplifications, such as supporting
applications that index into large arrays as contiguous chunks of memory.

Another
Program

Hard Drive

Program Sees: Actual Memory:

Figure 3.6: Mapping virtual addresses to real addresses.

An additional benefit of virtual memory systems is that they allow
for the total size of the address spaces of executing processes to be larger
than the actual main memory of the computer. This extension of memory
is allowed because the virtual memory system can use a portion of the
external drive to “park” blocks of memory when they are not being used by
executing processes. This is a great benefit, since it allows for a computer
to execute a set of processes that could not be multitasked if they all had to
keep their entire address spaces in main memory all the time.

3.1. Operating Systems Concepts 127

Page Faults

There is a slight time trade-off for benefit we get from virtual memory,
however, since accessing the hard drive is much slower than RAM. Indeed,
accessing a hard drive can be 10,000 times slower than accessing main
memory.

So operating systems use the hard drive to store blocks of memory that
are not currently needed, in order to have most memory accesses being in
main memory, not the hard drive. If a block of the address space is not
accessed for an extended period of time, it may be paged out and written to
disk. When a process attempts to access a virtual address that resides in a
paged out block, it triggers a page fault.

When a page fault occurs, another portion of the virtual memory system
known as the paging supervisor finds the desired memory block on the hard
drive, reads it back into RAM, updates the mapping between the physical
and virtual addresses, and possibly pages out a different unused memory
block. This mechanism allows the operating system to manage scenarios
where the total memory required by running processes is greater than the
amount of RAM available. (See Figure 3.7.)

1. Process requests virtual address not in memory,
causing a page fault.

2. Paging supervisor pages out
an old block of RAM memory.

“read 0110101”

Process
“Page fault,
let me fix that.”

Paging supervisor

Blocks in

old

Blocks in
RAM memory:

3. Paging supervisor locates requested block

External disknew

g g p q
on the disk and brings it into RAM memory.

Figure 3.7: Actions resulting from a page fault.

128 Chapter 3. Operating Systems Security

3.1.5 Virtual Machines

Virtual machine technology is a rapidly emerging field that allows an
operating system to run without direct contact with its underlying hard-
ware. For instance, such systems may allow for substantial electrical power
savings, by combining the activities of several computer systems into one,
with the one simulating the operating systems of the others. The way
this simulation is done is that an operating system is run inside a virtual
machine (VM), software that creates a simulated environment the operating
system can interact with. The software layer that provides this environment
is known as a hypervisor or virtual machine monitor (VMM). The operating
system running inside the VM is known as a guest, and the native operating
system is known as the host. Alternately, the hypervisor can run directly
in hardware without a host operating system, which is known as native
virtualization. To the guest OS, everything appears normal: it can interact
with external devices, perform I/O, and so on. However, the operating
system is in fact interacting with virtual devices, and the underlying virtual
machine is bridging the gap between these virtual devices and the actual
hardware, completely transparent to the guest operating system.

Implementing Virtual Machines

There are two main implementations of VMs. The first is emulation, where
the host operating system simulates virtual interfaces that the guest oper-
ating system interacts with. Communications through these interfaces are
translated on the host system and eventually passed to the hardware. The
benefit of emulation is that it allows more hardware flexibility. For example,
one can emulate a virtual environment that supports one processor on a ma-
chine running an entirely different processor. The downside of emulation
is that it typically has decreased performance due to the conversion process
associated with the communication between the virtual and real hardware.

The second VM implementation is known simply as virtualization, and
removes the above conversion process. As a result, the virtual interfaces
within the VM must be matched with the actual hardware on the host
machine, so communications are passed from one to the other seamlessly.
This reduces the possibilities for running exotic guest operating systems,
but results in a significant performance boost.

3.1. Operating Systems Concepts 129

Advantages of Virtualization

Virtualization has several advantages:
• Hardware Efficiency. Virtualization allows system administrators to

host multiple operating systems on the same machine, ensuring an
efficient allocation of hardware resources. In these scenarios, the
hypervisor is responsible for effectively managing the interactions
between each operating system and the underlying hardware, and
for ensuring that these concurrent operations are both efficient and
safe. This management may be very complex—one set of hardware
may be forced to manage many operating systems simultaneously.

• Portability. VMs provide portability, that is, the ability to run a
program on multiple different machines. This portability comes from
the fact that the entire guest operating system is running as software
virtually, so it is possible to save the entire state of the guest oper-
ating system as a snapshot and transfer it to another machine. This
portability also allows easy restoration in the event of a problem. For
example, malware researchers frequently employ VM technology to
study malware samples in an environment that can easily be restored
to a clean state should anything go awry.

• Security. In addition to maximizing available resources and provid-
ing portable computing solutions, virtual machines provide several
benefits from a security standpoint. By containing the operating
system in a virtual environment, the VM functions as a strict sandbox
that protects the rest of the machine in the event that the guest oper-
ating system is compromised. In the event of a breach, it is a simple
matter to disconnect a virtual machine from the Internet without
interrupting the operations of other services on the host machine.

• Management Convenience. Finally, the ability to take snapshots of
the entire virtual machine state can prove very convenient. Suppose
Bob, a user on a company network, is running a virtualized version
of Windows that boots automatically when he turns on his machine.
If Bob’s operating system becomes infected with malware, then a
system administrator could just log in to the host operating system,
disconnect Bob from the company network, and create a snapshot of
Bob’s virtual machine state. After reviewing the snapshot on another
machine, the administrator might decide to revert Bob’s machine to a
clean state taken previously. The whole process would be reasonably
time consuming and resource intensive on ordinary machines, but
VM technology makes it relatively simple.

130 Chapter 3. Operating Systems Security

3.2 Process Security

To protect a computer while it is running, it is essential to monitor and
protect the processes that are running on that computer.

3.2.1 Inductive Trust from Start to Finish

The trust that we place on the processes running on a computer is an
inductive belief based on the integrity of the processes that are loaded when
the computer is turned on, and that this state is maintained even if the
computer is shut down or put into a hibernation state.

The Boot Sequence

The action of loading an operating system into memory from a powered-off
state is known as booting, originally bootstrapping. This task seems like a
difficult challenge—initially, all of the operating system’s code is stored in
persistent storage, typically the hard drive. However, in order for the oper-
ating system to execute, it must be loaded into memory. When a computer
is turned on, it first executes code stored in a firmware component known
as the BIOS (basic input/output system). On modern systems, the BIOS
loads into memory the second-stage boot loader, which handles loading
the rest of the operating system into memory and then passes control of
execution to the operating system. (See Figure 3.8.)

Secondary Loader

Operating

System

CPU

BIOS

Figure 3.8: Operation of the BIOS.

3.2. Process Security 131

A malicious user could potentially seize execution of a computer at
several points in the boot process. To prevent an attacker from initiating
the first stages of booting, many computers feature a BIOS password that
does not allow a second-stage boot loader to be executed without proper
authentication, which is a topic we discuss, with respect to BIOS-related
security issues, in Section 2.4.4.

The Boot Device Hierarchy

There are some other security issues related to the boot sequence, however.
Most second-stage boot loaders allow the user to specify which device
should be used to load the rest of the operating system. In most cases,
this option defaults to booting from the hard drive, or in the event of a new
installation, from external media such as a DVD drive. Thus, one should
make sure that the operating system is always booted from trusted media.

There is a customizable hierarchy that determines the order of prece-
dence of booting devices: the first available device in the list is used for
booting. This flexibility is important for installation and troubleshooting
purposes, but as discussed in Section 2.4.4, it could allow an attacker
with physical access to boot another operating system from an external
media, bypassing the security mechanisms built into the operating system
intended to be run on the computer. To prevent these attacks, many com-
puters utilize second-stage boot loaders that feature password protections
that only allow authorized users to boot from external storage media.

Hibernation

Modern machines have the ability to go into a powered-off state known
as hibernation. While going into hibernation, the operating system stores
the entire contents of the machine’s memory into a hibernation file on disk
so that the state of the computer can be quickly restored when the system
is powered back on. Without additional security precautions, hibernation
exposes a machine to potentially invasive forensic investigation.

Since the entire contents of memory are stored into the hibernation file,
any passwords or sensitive information that were stored in memory at the
time of hibernation are preserved. A live CD attack can be performed to
gain access to the hibernation file. (See Section 2.4.4.) Windows stores
the hibernation file as C:\hiberfil.sys. Security researchers have shown the
feasibility of reversing the compression algorithm used in this file, so as to
extract a viewable snapshot of RAM at the time of hibernation, which opens
the possibility of the attack shown in Figure 3.9.

132 Chapter 3. Operating Systems Security

1. User closes a laptop computer,
putting it into hibernationputting it into hibernation.

2. Attacker copies the hiberfil.sys
file to discover any unencrypted
passwords that were stored
in memory when the computerin memory when the computer
was put into hibernation.

Figure 3.9: The hibernation attack.

Attacks that modify the hiberfil.sys file have also been demonstrated, so
that the execution of programs on the machine is altered when the machine
is powered on. Interestingly, Windows does not delete the hibernation
file after resuming execution, so it may persist even after the computer is
rebooted several times. A related attack on virtual memory page files, or
swap files, is discussed in Section 3.3.1. To defend against these attacks,
hard disk encryption should be used to protect hibernation files and swap
files.

3.2.2 Monitoring, Management, and Logging

One of the most important aspects of operating systems security is some-
thing military people call “situational awareness.” Keeping track of what
processes are running, what other machines have interacted with the sys-
tem via the Internet, and if the operating system has experienced any
unexpected or suspicious behavior can often leave important clues not only
for troubleshooting ordinary problems, but also for determining the cause
of a security breach. For example, noticing log entries of repeated failed
attempts to log in may warn of a brute-force attack, and prompt a system
administrator to change passwords to ensure safety.

Event Logging

Operating systems therefore feature built-in systems for managing event
logging. For example, as depicted in Figure 3.10, Windows includes an
event logging system known simply as the Windows Event Log.

3.2. Process Security 133

Figure 3.10: The Windows Event Log.

Windows defines three possible sources of logs, “System,” “Applica-
tion,” and “Security.” The System log can only be written to by the
operating system itself, while the Application log may be written to by
ordinary applications. Finally, the Security log can only be written to by a
special Windows service known as the Local Security Authority Subsystem
Service, visible in Process Explorer as lsass.exe. This service is responsible
for enforcing security policies such as access control and user authentica-
tion. In addition to these three predefined sources, users can define their
own log sources. Each log entry is known as an event. Events are given
unique identifiers, which correspond to any of the potential occurrences
on a Windows machine that might prompt logging. Examples include
applications exiting unexpectedly, users failing to properly authenticate,
network connections being made, and so on.

Unix-based systems, including Linux, have differing logging mecha-
nisms depending on the specific distribution. Typically, log files are stored
in /var/log or some similar location and are simple text files with descriptive
names. For example, auth.log contains records of user authentication, while
kern.log keeps track of unexpected kernel behavior. Like Windows logs,
entries contain a timestamp along with a description of the event. Typically,
writing to these log files can only be done by a special syslog daemon.
While Windows log files may allow easier handling when using Microsoft’s
event logging tools, the simple text format of Unix logs, containing one
event per line, allows quick and easy perusing.

134 Chapter 3. Operating Systems Security

Process Monitoring
There are several scenarios where we would like to find out exactly which
processes are currently running on our computer. For example, our com-
puter might be sluggish and we want to identify an application using up
lots of CPU cycles or memory. Or we may suspect that our computer
has been compromised by a virus and we want to check for suspicious
processes. Of course, we would like to terminate the execution of such a
misbehaving or malicious process, but doing so requires that we identify
it first. Every operating system therefore provides tools that allow users
to monitor and manage currently running processes. Examples include
the task manager application in Windows and the ps, top, pstree, and kill
commands in Linux.

Process Explorer

Process monitoring tools might seem like they are aimed at expert users or
administrators, since they present a detailed listing of running processes
and associated execution statistics, but they are useful tools for ordinary
users too. In Figure 3.11, we show a screen shot of just such a tool—Process
Explorer—which is a highly customizable and useful tool for monitoring
processes in the Microsoft Windows operating system.

Process Explorer is a good example of the kind of functionality that can
be provided by a good process monitoring tool. The tool bar of Process
Explorer contains various buttons, including one for terminating processes.
The mini graphs show the usage histories of CPU time, main memory, and
I/O, which are useful for identifying malicious or misbehaving processes.
The processes tree pane shows the processes currently running and has a
tabular format.

The components of Process Explorer provide a large amount of infor-
mation for process monitoring and managing. The left column (Process)
displays the tree of processes, that is, the processes and their parent-child
relationship, by means of a standard outline view. Note, for example, in
our screen shot shown in Figure 3.11, that process explorer.exe is the parent
of many processes, including the Firefox web browser and the Thunderbird
email client. Next to the process name is the icon of the associated program,
which helps to facilitate visual identification. The remaining columns
display, from left to right, the process ID (PID), percentage of CPU time
used (CPU), size (in KB) of the process address space (Virtual Size), and
description of the process (Description).

Large usage of CPU time and/or address space often indicate problem-
atic processes that may need to be terminated. A customization window
for the background color of processes is also shown in this example. In

3.2. Process Security 135

Figure 3.11: Screen shot of the Process Explorer utility for Microsoft Win-
dows, by Mark Russinovich, configured with three components: a menu
bar (top), a tool bar and three mini graphs (middle), and a process tree pane
(bottom).

particular, different colors are used to highlight newly started processes,
processes being terminated, user processes (started by the same user run-
ning Process Explorer), and system processes, such as services. All of these
features provide a useful graphical user interface for identifying malicious
and misbehaving processes, as well as giving a simple means to kill them
once they are identified.

In addition to monitoring performance, it is important to gather detailed
information about the process image, that is, the executable program asso-
ciated with the process. In our example of Figure 3.11, Process Explorer
provides the name of the entity that has developed the program (Company)
and the location on disk of the image (Path). The location of the image
may allow the detection of a virus whose file name is the same as that of a
legitimate application but is located in a nonstandard directory.

An attacker may also try to replace the image of a legitimate program
with a modified version that performs malicious actions. To counter this at-
tack, the software developer can digitally sign the image (see Section 1.3.2)
and Process Explorer can be used to verify the signature and display the
name of the entity who has signed the image (Verified Signer).

136 Chapter 3. Operating Systems Security

3.3 Memory and Filesystem Security

The contents of a computer are encapsulated in its memory and filesystem.
Thus, protection of a computer’s content has to start with the protection of
its memory and its filesystem.

3.3.1 Virtual Memory Security

As we observed in Section 3.1.4, virtual memory is a useful tool for oper-
ating systems. It allows for multiple processes with a total address space
larger than our RAM memory to run effectively, and it supports these
multiple processes to each view its address spaces as being contiguous.
Even so, these features come with some security concerns.

Windows and Linux Swap Files

On Windows, virtual memory pages that have been written to the hard
disk are actually contained in what is known as the page file, located at
C:\pagefile.sys. Linux, on the other hand, typically requires users to set
up an entire partition of their hard disk, known as the swap partition,
to contain these memory pages. In addition to the swap partition, Linux
alternately supports a swap file, which functions similarly to the Windows
page file. In all cases, each operating system enforce rules preventing users
from viewing the contents of virtual memory files while the OS is running,
and it may be configured such that they are deleted when the machine is
shut down.

Attacks on Virtual Memory

However, if an attacker suddenly powered off the machine without prop-
erly shutting down and booted to another operating system via external
media, it may be possible to view these files and reconstruct portions
of memory, potentially exposing sensitive information. To mitigate these
risks, hard disk encryption should be used in all cases where potentially
untrusted parties have physical access to a machine. Such encryption does
not stop such an attacker from reading a swap file, of course, since he would
have physical access to the computer. But it does prevent such an attacker
from learning anything useful from the contents of these files, provided he
is not able to get the decryption keys.

3.3. Memory and Filesystem Security 137

3.3.2 Password-Based Authentication

The question of who is allowed access to the resources in a computer system
begins with a central question of operating systems security:

How does the operating system securely identify its users?

The answer to this question is encapsulated in the authentication concept,
that is, the determination of the identity or role that someone has (in this
case, with respect to the resources the operating system controls).

A standard authentication mechanism used by most operating systems
is for users to log in by entering a username and password. If the entered
password matches the stored password associated with the entered user-
name, then the system accepts this authentication and logs the users into
the system.

Instead of storing the passwords as clear text, operating systems typi-
cally keep cryptographic one-way hashes of the passwords in a password
file or database instead. Thanks to the one-way property of cryptographic
hash functions (see Section 1.3.4), an attacker who gets hold of the password
file cannot efficiently derive from it the actual passwords and has to resort
to a guessing attack. That is, the basic approach to guessing passwords
from the password file is to conduct a dictionary attack (Section 1.4.2),
where each word in a dictionary is hashed and the resulting value is
compared with the hashed passwords stored in the password file. If users
of a system use weak passwords, such as English names and words, the
dictionary attack can often succeed with a dictionary of only 500,000 words,
as opposed to the search space of over 5 quadrillion words that could be
formed from eight characters that can be typed on a standard keyboard.

Password Salt

One way to make the dictionary attack more difficult to launch is to use
salt, which is a cryptographic technique of using random bits as part of
the input to a hash function or encryption algorithm so as to increase the
randomness in the output. In the case of password authentication, salt
would be introduced by associating a random number with each userid.
Then, rather than comparing the hash of an entered password with a stored
hash of a password, the system compares the hash of an entered password
and the salt for the associated userid with a stored hash of the password
and salt. Let U be a userid and P be the corresponding password. When
using salt, the password file stores the triplet (U, S, h(S||P)), where S is the
salt for U and h is a cryptographic hash function. (See Figure 3.12.)

138 Chapter 3. Operating Systems Security

Without salt:

P d fil1. User types userid, X, and password, P.

2. System looks up H, the stored hash of
X’s password

…
X: H

Password file:

X s password.

3. System tests whether h(P) = H.
…

With salt:

1. User types userid, X, and password, P.

2. System looks up S and H, where S is
Password file:

y p
the random salt for userid X and H is
stored hash of S and X’s password.

3 System tests whether h(S||P) = H

…
X: S, H
…

3. System tests whether h(S||P) = H.

Figure 3.12: Password salt. We use || to denote string concatenation and h to
denote a cryptographic hash function.

How Salt Increases Search Space Size

Using password salt significantly increases the search space needed for a
dictionary attack. Assuming that an attacker cannot find the salt associated
with a userid he is trying to compromise, then the search space for a
dictionary attack on a salted password is of size

2B × D,

where B is the number of bits of the random salt and D is the size of the list
of words for the dictionary attack. For example, if a system uses a 32-bit
salt for each userid and its users pick the kinds of passwords that would
be in a 500,000 word dictionary, then the search space for attacking salted
passwords would be

232 × 500,000 = 2,147,483,648,000,000,

which is over 2 quadrillion. Also, even if an attacker can find the salt
associated with each userid (which the system should store in encrypted
form), by employing salted passwords, an operating system can limit his
dictionary attack to one userid at a time (since he would have to use a
different salt value for each one).

3.3. Memory and Filesystem Security 139

Password Authentication in Windows and Unix-based Systems

In Microsoft Windows systems, password hashes are stored in a file called
the Security Accounts Manager (SAM) file, which is not accessible to
regular users while the operating system is running. Older versions of
Windows stored hashed passwords in this file using an algorithm based on
DES known as LAN Manager hash, or LM hash, which has some security
weaknesses. This password-hashing algorithm pads a user’s password to
14 characters, converts all lowercase letters to uppercase, and uses each of
the 7-byte halves to generate a DES key. These two DES keys are used
to encrypt a stored string (such as “KGS!@#$%”), resulting in two 8-byte
ciphertexts, which are concatenated to form the final hash. Because each
half of the user’s password is treated separately, the task of performing a
dictionary attack on an LM hash is actually made easier, since each half
has a maximum of seven characters. In addition, converting all letters to
uppercase significantly reduces the search space. Finally, the LM hash al-
gorithm does not include a salt, so using tables of precomputed information
is especially effective.

Windows improved these weaknesses by introducing the NTLM algo-
rithm. NTLM is a challenge-response protocol used for authentication by
several Windows components. The protocol involves a server, in this case
the operating system, and a client, in this case a service attempting to
authenticate a user. The operating system sends an 8-byte random number
as a challenge to the client. Next, the client computes two 24-byte responses
using two secrets, the LM hash of the password and the MD4 hash of the
password. For each secret, the client pads the 16-byte hash to 21 bytes with
null characters, splits the 21 bytes into three groups of 7 bytes, and uses
each 7-byte segment as a key to DES encrypt the 8-byte challenge. Finally,
the three 8-byte ciphertexts (for each secret) are concatenated, resulting in
two 24-byte responses (one using the MD4 hash, and the other using the
LM hash). These two responses are sent to the server, which has performed
the same computations using its stored hashes, and authenticates the user.
While NTLM has not been completely broken, some weaknesses have been
identified. Specifically, both the MD4 and LM hashes are unsalted and as
such are vulnerable to precomputation attacks.

Unix-based systems feature a similar password mechanism, and store
authentication information at /etc/passwd, possibly in conjunction with
/etc/shadow. However, most Unix variants use salt and are not as restricted
in the choice of hash algorithm, allowing administrators to chose their
preference. At the time of this writing, most systems use a salted MD5
algorithm or a DES variant, but many are able to use other hash algorithms
such as Blowfish.

140 Chapter 3. Operating Systems Security

3.3.3 Access Control and Advanced File Permissions

Once a user is authenticated to a system, the next question that must be
addressed is that of access control:

How does the operating system determine what users have
permission to do?

To address in detail this question with respect to files, we need to develop
some terminology. A principal is either a user or a group of users. A
principal can be explicitly defined as a set of users, such as a group,
friends, consisting of users peter and paul, or it can be one of the principals
predefined by the operating system. For example, in Unix-based systems,
the following users and groups are defined for each file (or folder). User
owner refers to the user owning the file. Group group, called the owning
group, is the default group associated with the file. Also, group all includes
all the users in the system and group other consists of all but owner, i.e., of
all users except the owner of the file.

A permission is a specific action on a file or folder. For example, file
permissions include read and write and program files may additionally
have an execute permission. A folder may also have a list permission,
which refers to being able to inspect (list) the contents of the folder, and
execute, which allows for setting the current directory as that folder. The
execute permission of folders is the basis for the path-based access control
mechanism in Unix-based systems. (See Section 3.1.3.)

Access Control Entries and Lists

An access control entry (ACE) for a given file or folder consists of a triplet
(principal, type, permission), where type is either allow or deny. An access
control list (ACL) is an ordered list of ACEs (Section 1.2.2).

There are a number of specific implementation details that must be
considered when designing an operating system permissions scheme. For
one, how do permissions interact with the file organization of the system?
Specifically, is there a hierarchy of inheritance? If a file resides in a folder,
does it inherit the permissions of its parent, or override them with its own
permissions? What happens if a user has permission to write to a file but
not to the directory that the file resides in? The meaning of read, write, and
execute permissions seems intuitive for files, but how do these permissions
affect folders? Finally, if permissions aren’t specifically granted or denied,
are they implied by default? Interestingly, even between two of the most
popular operating system flavors, Linux and Windows, the answers to
these questions can vary dramatically.

3.3. Memory and Filesystem Security 141

Linux Permissions

Linux inherits most of its access control systems from the early Unix sys-
tems discussed previously. Linux features file permission matrices, which
determine the privileges various users have in regards to a file. All permis-
sions that are not specifically granted are implicitly denied, so there is no
mechanism (or need) to explicitly deny permissions. According to the path-
based access control principle, in order to access a file, each ancestor folder
(in the filesystem tree) must have execute permission and the file itself
must have read permission. Finally, owners of files are given the power
to change the permissions on those files—this is known as discretionary
access control (DAC).

In addition to the three basic permissions (read, write, and execute),
Linux allows users to set extended attributes for files, which are applied
to all users attempting to access these files. Example extended attributes
include making a file append-only (so a user may only write to the end
of the file) and marking a file as “immutable,” at which point not even
the root user can delete or modify the file (unless he or she removes the
attribute first). These attributes can be set and viewed with the chattr and
lsattr commands, respectively.

More recently, Linux has begun supporting an optional ACL-based
permissions scheme. ACLs on Linux can be checked with the getfacl
command, and set with the setfacl command. Within this scheme, each file
has basic ACEs for the owner, group, and other principals and additional
ACEs for specific users or groups, called named users and named groups,
can be created. There is also a mask ACE, which specifies the maximum
allowable permissions for the owning group and any named users and
groups. Let U be the euid of the process attempting access to the file or
folder with certain requested permissions. To determine whether to grant
access, the operating system tries to match the following conditions and
selects the ACE associated with the first matching condition:

• U is the userid of the file owner: the ACE for owner;
• U is one of the named users: the ACE for U;
• one of the groups of U is the owning group and the ACE for group

contains the requested permissions: the ACE for group;
• one of the groups of U is a named group G and its ACE contains the

requested permissions: the ACE for G;
• for each group G of U that is the owning group or a named group,

the ACE for G does not contain the requested permissions: the empty
ACE;
• otherwise: the ACE for other.

142 Chapter 3. Operating Systems Security

If the ACE for owner or other or the empty ACE has been selected, then
its permissions determine access. Else, the selected ACE is “ANDed”
with the mask ACE and the permissions of the resulting ACE determine
access. Note that the although multiple ACEs could be selected in the
fourht condition, the access decision does not depend on the specific ACE
selected. At the time of this writing, Linux’s ACL scheme is not very widely
used, despite the fact that it allows for more flexibility in access control.

Some Linux distributions have even more advanced access control
mechanisms. Security-Enhanced Linux (SELinux), developed primarily
by the United States National Security Agency, is a series of security en-
hancements designed to be applied to Unix-like systems. SELinux features
strictly enforced mandatory access control, which defines virtually every
allowable action on a machine. Each rule consists of a subject, referring to
the process attempting to gain access, an object, referring to the resource
being accessed, and a series of permissions, which are checked by the
operating system appropriately. SELinux embodies the principle of least
privilege: limiting every process to the bare minimum permissions needed
to function properly, which significantly minimizes the effects of a security
breach. In addition, unlike DAC, users are not given the power to decide
security attributes of their own files. Instead, this is delegated to a central
security policy administrator. These enhancements allow SELinux to create
a much more restrictive security environment.

Windows Permissions

Windows uses an ACL model that allows users to create sets of rules for
each user or group. These rules either allow or deny various permissions
for the corresponding principal. If there is no applicable allow rule, access
is denied by default. The basic permissions are known as standard permis-
sions, which for files consist of modify, read and execute, read, write, and
finally, full control, which grants all permissions. Figure 3.13 depicts the
graphical interface for editing permissions in Windows XP.

To finely tune permissions, there are also advanced permissions, which
the standard permissions are composed of. These are also shown in Fig-
ure 3.13. For example, the standard read permission encompasses several
advanced permissions: read data, read attributes, read extended attributes,
and read permissions. Setting read to allow for a particular principal
automatically allows each of these advanced permissions, but it is also
possible to set only the desired advanced permissions.

As in Linux, folders have permissions too: read is synonymous with the
ability to list the contents of a folder, and write allows a user to create new
files within a folder. However, while Linux checks each folder in the path to

3.3. Memory and Filesystem Security 143

Figure 3.13: Customizing file permissions in Windows XP.

a file before allowing access, Windows has a different scheme. In Windows,
the path to a file is simply an identifier that has no bearing on permissions.
Only the ACL of the file in question is inspected before granting access. This
allows administrators to deny a user access to a folder, but allow access to
a file within that folder, which would not be possible in Linux.

In Windows, any ACEs applied to a folder may be set to apply not to just
the selected folder, but also to the subfolders and files within it. The ACEs
automatically generated in this way are called inherited ACEs, as opposed
to ACEs that are specifically set, which are called explicit ACEs. Note
that administrators may stop the propagation of inheritance at a particular
folder, ensuring that the children of that folder do not inherit ACEs from
ancestor folders.

This scheme of inheritance raises the question of how ACEs should take
precedence. In fact, there is a simple hierarchy that the operating system
uses when making access control decision. At any level of the hierarchy,
deny ACEs take precedence over allow ACEs. Also, explicit ACEs take
precedence over inherited ACEs, and inherited ACEs take precedence in
order of the distance between the ancestor and the object in question—the
parent’s ACEs take precedent over the grandparent’s ACEs, and so on.
With this algorithm in place, resolving permissions is a simple matter
of enumerating the entries of the ACL in the appropriate order until an
applicable rule is found. This hierarchy, along with the finely granulated
control of Windows permissions, provides administrators with substantial
flexibility, but also may create the potential for security holes due to its
complexity—if rules are not carefully applied, sensitive resources may be
exposed.

144 Chapter 3. Operating Systems Security

The SetUID Bit

A related access-control question of operating systems security is how to
give certain programs permission to perform tasks that the users running
them should not otherwise be allowed to do. For example, consider the
password mechanism in early Unix systems, where user login information
is stored in /etc/passwd. Clearly, ordinary users should not be able to edit
this file, or a user could simply change the password of another user and
assume their identity. However, users should be allowed to change their
own passwords.

In other words, a program is needed that can be run by an ordinary user,
allowing changes to a file that ordinary users cannot alter. In the existing
architecture, however, this doesn’t seem possible. Since processes inherit
the permissions of their parent process, a password-changing program run
by an ordinary user would be restricted to the permissions of that user, and
would be unable to write to the /etc/passwd file.

To solve this problem, Unix systems have an additional bit in the file
permission matrix known as a setuid bit. If this bit is set, then that program
runs with the effective user ID of its owner, rather than the process that
executed it. For example, the utility used to change passwords in Unix is
passwd. This program is owned by the root account, has the execute bit set
for the others class, and has the setuid bit set. When a user runs passwd,
the program runs with the permissions of the root user, allowing it to alter
the /etc/passwd file, which can only be written by the root user. Setuid
programs can also drop their higher privileges by making calls to the setuid
family of functions.

Although it is less commonly used, it is possible to set a setgid bit, which
functions similarly to setuid, but for groups. When the setgid bit is set, the
effective group ID of the running process is equal to the ID of the group
that owns the file, as opposed to the group id of the parent process.

The setuid mechanism is effective in that it solves the access-without-
privileges problem, but it also raises some security concerns. In particu-
lar, it requires that setuid programs are created using safe programming
practices. If an attacker can force a setuid program to execute arbitrary
code, as we discuss later with respect to buffer overflow attacks, then the
attacker can exploit the setuid mechanism to assume the permissions of the
program’s owner, creating a privilege escalation scenario.

3.3. Memory and Filesystem Security 145

An Example SetUID Program

An example setuid program can be found in Code Fragment 3.1. In this
example, the application calls seteuid() to drop and restore its permissions.

Note that this program runs with the permissions of the user for most of
its execution, but briefly raises its permissions to that of its owner in order
to write to a log file that ordinary users presumably cannot access.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

static uid t euid, uid;

int main(int argc, char * argv[])
{

FILE *file;
/* Store real and effective user IDs */
uid = getuid();
euid = geteuid();
/* Drop priviliges */

seteuid(uid);
/* Do something useful */
/* . . . */
/* Raise privileges */
seteuid(euid);
/* Open the file */
file = fopen("/home/admin/log", "a");
/* Drop privileges again */
seteuid(uid);
/* Write to the file */
fprintf(file, "Someone used this program.\n");
/* Close the file stream and return */
fclose(file);
return 0;
}

Code Fragment 3.1: A simple C program that uses seteuid() to change its
permissions. The fprintf action is done using the permissions of the owner
of this program, not the user running this program.

146 Chapter 3. Operating Systems Security

3.3.4 File Descriptors

In order for processes to work with files, they need a shorthand way to
refer to those files, other than always going to the filesystem and specifying
a path to the files in question. In order to efficiently read and write files
stored on disk, modern operating systems rely on a mechanism known
as file descriptors. File descriptors are essentially index values stored in
a table, aptly known as the file descriptor table. When a program needs
to access a file, a call is made to the open system call, which results in
the kernel creating a new entry in the file descriptor table which maps
to the file’s location on the disk. This new file descriptor is returned to
the program, which can now issue read or write commands using that file
descriptor. When receiving a read or write system call, the kernel looks
up the file descriptor in the table and performs the read or write at the
appropriate location on disk. Finally, when finished, the program should
issue the close system call to remove the open file descriptor.

Reading and Writing with File Descriptors

Several security checks occur during the process of performing a read or
write on a file, given its file descriptor. When the open system call is issued,
the kernel checks that the calling process has permission to access the file
in the manner requested—for example, if a process requests to open a file
for writing, the kernel ensures that the file has the write permission set for
that process before proceeding. Next, whenever a call to read or write is
issued, the kernel checks that the file descriptor being written to or read
from has the appropriate permissions set. If not, the read or write fails and
the program typically halts.

On most modern systems, it is possible to pass open file descriptors
from one process to another using ordinary IPC mechanisms. For exam-
ple, on Unix-based systems (including Linux) it is possible to open a file
descriptor in one process and send a copy of the file descriptor to another
process via a local socket.

File Descriptor Leaks

A common programming error that can lead to serious security problems is
known as a file descriptor leak. A bit of additional background is required
to understand this type of vulnerability. First, it is important to note
that when a process creates a child process (using a fork command), that
child process inherits copies of all of the file descriptors that are open in
the parent. Second, the operating system only checks whether a process

3.3. Memory and Filesystem Security 147

has permissions to read or write to a file at the moment of creating a
file descriptor entry; checks performed at the time of actually reading or
writing to a file only confirm that the requested action is allowed according
to the permissions the file descriptor was opened with. Because of these
two behaviors, a dangerous scenario can arise when a program with high
privileges opens a file descriptor to a protected file, fails to close it, and then
creates a process with lower permissions. Since the new process inherits
the file descriptors of its parent, it will be able to read or write to the
file, depending on how the parent process issued the open system call,
regardless of the fact that the child process might not have permission to
open that file in other circumstances.

An Example Vulnerability

An example of this scenario can be found in Code Fragment 3.2. Notice in
this example how there is no call to close the file descriptor before executing
a new process. As a result, the child is able to read the file. In a situation
such as this one, the child could access the open file descriptor via a number
of mechanisms, most commonly using the fcntl() family of functions. To fix
this vulnerability, a call to fclose(), which would close the file descriptor,
should be made before executing the new program.

#include <stdio.h>
#include <unistd.h>

int main(int argc, char * argv[])
{

/* Open the password file for reading */
FILE *passwords;
passwords = fopen("/home/admin/passwords", "r");

/* Read the passwords and do something useful */
/* . . . */

/* Fork and execute Joe’s shell without closing the file */
execl("/home/joe/shell", "shell", NULL);

}

Code Fragment 3.2: A simple C program vulnerable to a file descriptor leak.

148 Chapter 3. Operating Systems Security

3.3.5 Symbolic Links and Shortcuts

It is often useful for users to be able to create links or shortcuts to other
files on the system, without copying the entire file to a new location. For
example, it might be convenient for a user to have a link to a program on
their desktop while keeping the actual program at another location. In this
way, if the user updates the underlying file, all links to it will automatically
be referring to the updated version.

In Linux and other Unix-based systems, this can be accomplished
through the use of symbolic links, also known as symlinks or soft links,
which can be created using the ln command. To the user, symlinks appear to
reside on the disk like any other file, but rather than containing information,
they simply point to another file or folder on disk.

This linking is completely transparent to applications, as well. If a
program attempts to open and read from a symlink, the operating system
follows the link so that the program actually interacts with the file the
symlink is pointing to. Symlinks can be chained together, so that one
symlink points to another, and so on, as long as the final link points to an
actual file. In these cases, programs attempting to access a symlink follow
the chain of links until reaching the file.

Symlinks can often provide a means by which malicious parties can
trick applications into performing undesired behavior, however. As an
example, consider a program that opens and reads a file specified by the
user. Suppose that this program is designed specifically to prohibit the
reading of one particular file, say, /home/admin/passwords, for example.
An unsafe version of this program would simply check that the filename
specified by the user is not /home/admin/passwords. However, an attacker
could trick this program by creating a symlink to the passwords file and
specifying the path of the symlink instead. To solve this aliasing problem,
the program should either check if the provided filename refers to a sym-
link, or confirm the actual filename being opened by using a stat system
call, which retrieves information on files.

More recent versions of Windows support symlinks similar to those on
Unix, but much more common is the use of shortcuts. A shortcut is similar
to a symlink in that it is simply a pointer to another file on disk. However,
while symlinks are automatically resolved by the operating system so that
their use is transparent, Windows shortcuts appear as regular files, and only
programs that specifically identify them as shortcuts can follow them to the
referenced files. This prevents most of the symlink attacks that are possible
on Unix-based systems, but also limits their power and flexibility.

3.4. Application Program Security 149

3.4 Application Program Security

Many attacks don’t directly exploit weaknesses in the OS kernel, but rather
attack insecure programs. These programs, operating at the applications
layer, could even be nonkernel operating system programs, such as the pro-
gram to change passwords, which runs with higher privileges than those
granted to common users. So these programs should be protected against
privilege escalation attacks. But before we can describe such protections,
we need to first discuss some details about program creation.

3.4.1 Compiling and Linking

The process of converting source code, which is written in a programming
language, such as Java or C++, to the machine code instructions that a
processor can execute is known as compiling. A program may be compiled
to be either statically linked or dynamically linked. With static linking,
all shared libraries, such as operating system functions, that a program
needs during its execution are essentially copied into the compiled program
on disk. This may prove to be safer from a security perspective, but is
inconvenient in that it uses additional space for duplicate code that might
be used by many programs, and it may limit debugging options.

The alternative is dynamic linking, where shared libraries are loaded
when the program is actually run. When the program is executed, the
loader determines which shared libraries are needed for the program, finds
them on the disk, and imports them into the process’s address space. In
Microsoft Windows, each of these external libraries is known as a dynamic
linking library (DLL), while in many Unix systems, they are simply referred
to as shared objects. Dynamic linking is an optimization that saves space
on the hard disk, and allows developers to modularize their code. That
is, instead of recompiling an entire application, it may be possible to alter
just one DLL, for instance, to fix a bug since DLL that could potentially
affect many other programs. The process of injecting arbitrary code into
programs via shared libraries is known as DLL injection. DLL injection can
be incredibly useful for the purposes of debugging, in that programmers
can easily change functions in their applications without recompiling their
code. However, this technique poses a potential security risk because it may
allow malicious parties to inject their own code into legitimate programs.
Imagine the consequences if a guest user redefined a function called by a
system administrator program; hence, the need for administrative privi-
leges.

150 Chapter 3. Operating Systems Security

3.4.2 Simple Buffer Overflow Attacks

A classic example of such an application program attack, which allows for
privilege escalation, is known as a buffer overflow attack. In any situation
where a program allocates a fixed-size buffer in memory in which to store
information, care must be taken to ensure that copying user-supplied data
to this buffer is done securely and with boundary checks. If this is not the
case, then it may be possible for an attacker to provide input that exceeds
the length of the buffer, which the program will then dutifully attempt to
copy to the allotted buffer. However, because the provided input is larger
than the buffer, this copying may overwrite data beyond the location of the
buffer in memory, and potentially allow the attacker to gain control of the
entire process and execute arbitrary code on the machine (recall that the
address space for a process includes both the data and the code for that
process).

Arithmetic Overflow

The simplest kind of overflow condition is actually a limitation having
to do with the representation of integers in memory. In most 32-bit ar-
chitectures, signed integers (those that can be either positive or negative)
are expressed in what is known as two’s compliment notation. In hex
notation, signed integers 0x00000000 to 0x7ffffff (equivalent to 231 − 1)
are positive numbers, and 0x80000000 to 0xffffffff are negative numbers.
The threshold between these two ranges allows for overflow or under-
flow conditions. For example, if a program continually adds very large
numbers and eventually exceeds the maximum value for a signed integer,
0x7fffffff, the representation of the sum overflows and becomes negative
rather than positive. Similarly, if a program adds many negative numbers,
eventually the sum will underflow and become positive. This condition
also applies to unsigned integers, which consist of only positive numbers
from 0x00000000 to 0xffffffff. Once the highest number is reached, the next
sequential integer wraps around to zero.

An Example Vulnerability

This numerical overflow behavior can sometimes be exploited to trick an
application to perform undesirable behavior. As an example, suppose a
network service keeps track of the number of connections it has received
since it has started, and only grants access to the first five users. An unsafe
implementation can be found in Code Fragment 3.3.

3.4. Application Program Security 151

#include <stdio.h>

int main(int argc, char * argv[])
{

unsigned int connections = 0;
// Insert network code here
// . . .
// . . .
// Does nothing to check overflow conditions
connections++;
if(connections < 5)

grant access();
else

deny access();
return 1;
}

Code Fragment 3.3: A C program vulnerable to an arithmetic overflow.

An attacker could compromise the above system by making a huge
number of connections until the connections counter overflows and wraps
around to zero. At this point, the attacker will be authenticated to the
system, which is clearly an undesirable outcome. To prevent these types of
attacks, safe programming practices must be used to ensure that integers
are not incremented or decremented indefinitely and that integer upper
bounds or lower bounds are respected. An example of a safe version of
the program above can be found in Code Fragment 3.4.

#include <stdio.h>

int main(int argc, char * argv[])
{

unsigned int connections = 0;
// Insert network code here
// . . .
// . . .
// Prevents overflow conditions
if(connections < 5)

connections++;
if(connections < 5)

grant access();
else

deny access();
return 1;

}

Code Fragment 3.4: A variation of the program in Code Fragment 3.3,
protected against arithmetic overflow.

152 Chapter 3. Operating Systems Security

3.4.3 Stack-Based Buffer Overflow

Another type of buffer overflow attack exploits the special structure of the
memory stack. Recall from Section 3.1.4, that the stack is the component of
the memory address space of a process that contains data associated with
function (or method) calls. The stack consists of frames, each associated
with an active call. A frame stores the local variables and arguments of
the call and the return address for the parent call, i.e., the memory address
where execution will resume once the current call terminates. At the base
of the stack is the frame of the main() call. At the end of the stack is the
frame of the currently running call. This organizational structure allows for
the CPU to know where to return to when a method terminates, and it also
automatically allocates and deallocates the space local variables require.

In a buffer overflow attack, an attacker provides input that the program
blindly copies to a buffer that is smaller than the input. This commonly
occurs with the use of unchecked C library functions, such as strcpy() and
gets(), which copy user input without checking its length.

A buffer overflow involving a local variable can cause a program to
overwrite memory beyond the buffer’s allocated space in the stack, which
can have dangerous consequences. An example of a program that has a
stack buffer overflow vulnerability is shown in Code Fragment 3.5.

In a stack-based buffer overflow, an attacker could overwrite local vari-
ables adjacent in memory to the buffer, which could result in unexpected
behavior. Consider an example where a local variable stores the name of a
command that will be eventually executed by a call to system(). If a buffer
adjacent to this variable is overflowed by a malicious user, that user could
replace the original command with one of his or her choice, altering the
execution of the program.

#include <stdio.h>

int main(int argc, char * argv[])
{

// Create a buffer on the stack
char buf[256];
// Does not check length of buffer before copying argument
strcpy(buf,argv[1]);
// Print the contents of the buffer
printf("%s\n",buf);
return 1;
}

Code Fragment 3.5: A C program vulnerable to a stack buffer overflow.

3.4. Application Program Security 153

Although this example is somewhat contrived, buffer overflows are
actually quite common (and dangerous). A buffer overflow attack is es-
pecially dangerous when the buffer is a local variable or argument within
a stack frame, since the user’s input may overwrite the return address
and change the execution of the program. In a stack smashing attack, the
attacker exploits a stack buffer vulnerability to inject malicious code into the
stack and overwrite the return address of the current routine so that when
it terminates, execution is passed to the attacker’s malicious code instead
of the calling routine. Thus, when this context switch occurs, the malicious
code will be executed by the process on behalf of the attacker. An idealized
version of a stack smashing attack, which assumes that the attacker knows
the exact position of the return address, is illustrated in Figure 3.14.

c
u
rr

e
n
t
fr

a
m

e
 return address

 p
re

v
io

u
s
 f
ra

m
e
s

buffer

program code program code

next memory location

padding

a
tt
a
c
k
e
r’

s
 i
n
p
u
t

(a) (b)

malicious code

Figure 3.14: A stack smashing attack under the assumption that the attacker
knows the position of the return address. (a) Before the attack, the return
address points to a location in the program code. (b) Exploiting the unpro-
tected buffer, the attacker injects into the address space input consisting of
padding up to the return address location, a modified return address that
points to the next memory location, and malicious code. After completing
execution of the current routine, control is passed to the malicious code.

154 Chapter 3. Operating Systems Security

Seizing Control of Execution

In a realistic situation of a stack-based buffer overflow attack, the first
problem for the attacker is to guess the location of the return address with
respect to the buffer and to determine what address to use for overwriting
the return address so that execution is passed to the attacker’s code. The
nature of operating system design makes this challenging for two reasons.

First, processes cannot access the address spaces of other processes, so
the malicious code must reside within the address space of the exploited
process. Because of this, the malicious code is often kept in the buffer itself,
as an argument to the process provided when it is started, or in the user’s
shell environment, which is typically imported into the address space of
processes.

Second, the address space of a given process is unpredictable and may
change when a program is run on different machines. Since all programs
on a given architecture start the stack at the same relative address for each
process, it is simple to determine where the stack starts, but even with
this knowledge, knowing exactly where the buffer resides on the stack is
difficult and subject to guesswork.

Several techniques have been developed by attackers to overcome
these challenges, including NOP sledding, return-to-libc, and the jump-
to-register or trampolining techniques.

NOP Sledding

NOP sledding is a method that makes it more likely for the attacker to
successfully guess the location of the code in memory by increasing the size
of the target. A NOP or No-op is a CPU instruction that does not actually
do anything except tell the processor to proceed to the next instruction.
To use this technique, the attacker crafts a payload that contains an ap-
propriate amount of data to overrun the buffer, a guess for a reasonable
return address in the process’s address space, a very large number of NOP
instructions, and finally, the malicious code. When this payload is provided
to a vulnerable program, it copies the payload into memory, overwriting the
return address with the attacker’s guess. In a successful attack, the process
will jump to the guessed return address, which is likely to be somewhere in
the high number of NOPs (known as the NOP sled). The processor will then
“sled through” all of the NOPs until it finally reaches the malicious code,
which will then be executed. NOP sledding is illustrated in Figure 3.15.

3.4. Application Program Security 155

Buffer
Other

Program
Data

Return
Address

Before Copying

Junk Padding
Guessed
Address

of
Shellcode

NOPs

After Copying

Shellcode

Figure 3.15: The NOP sledding technique for stack smashing attacks.

Trampolining

Despite the fact that NOP sledding makes stack-based buffer overflows
much more likely to succeed, they still require a good deal of guesswork
and are not extremely reliable. Another technique, known as jump-to-
register or trampolining, is considered more precise. As mentioned above,
on initialization, most processes load the contents of external libraries
into their address space. These external libraries contain instructions that
are commonly used by many processes, system calls, and other low-level
operating system code. Because they are loaded into the process’s address
space in a reserved section of memory, they are in predictable memory
locations. Attackers can use knowledge of these external libraries to per-
form a trampolining attack. For example, an attacker might be aware of a
particular assembly code instruction in a Windows core system DLL and
suppose this instruction tells the processor to jump to the address stored in
one of the processor’s registers, such as ESP. If the attacker can manage
to place his malicious code at the address pointed to by ESP and then
overwrite the return address of the current function with the address of
this known instruction, then on returning, the application will jump and
execute the jmp esp instruction, resulting in execution of the attacker’s
malicious code. Once again, specific examples will vary depending on the
application and the chosen library instruction, but in general this technique
provides a reliable way to exploit vulnerable applications that is not likely
to change on subsequent attempts on different machines, provided all of the
machines involved are running the same version of the operating system.

156 Chapter 3. Operating Systems Security

The Return-to-libc Attack

A final attack technique, known as a return-to-libc attack, also uses the
external libraries loaded at runtime—in this case, the functions of the C
library, libc. If the attacker can determine the address of a C library function
within a vulnerable process’s address space, such as system() or execv, this
information can be used to force the program to call this function. The
attacker can overflow the buffer as before, overwriting the return address
with the address of the desired library function. Following this address,
the attacker must provide a new address that the libc function will return
to when it is finished execution (this may be a dummy address if it is
not necessary for the chosen function to return), followed by addresses
pointing to any arguments to that function. When the vulnerable stack
frame returns, it will call the chosen function with the arguments provided,
potentially giving full control to the attacker. This technique has the added
advantage of not executing any code on the stack itself. The stack only
contains arguments to existing functions, not actual shellcode. Therefore,
this attack can be used even when the stack is marked as nonexecutable.

Shellcode

Once an attacker has crafted a stack-based buffer overflow exploit, they
have the ability to execute arbitrary code on the machine. Attackers often
choose to execute code that spawns a terminal or shell, allowing them to
issue further commands. For this reason, the malicious code included in an
exploit is often known as shellcode. Since this code is executed directly on
the stack by the CPU, it must be written in assembly language, low-level
processor instructions, known as opcodes, that vary by CPU architecture.
Writing usable shellcode can be difficult. For example, ordinary assembly
code may frequently contain the null character, 0x00. However, this code
cannot be used in most buffer overflow exploits, because this character
typically denotes the end of a string, which would prevent an attacker from
successfully copying his payload into a vulnerable buffer; hence, shellcode
attackers employ tricks to avoid null characters.

Buffer overflow attacks are commonly used as a means of privilege
escalation by exploiting SetUID programs. Recall that a SetUID program
can be executed by low-level users, but is allowed to perform actions on
behalf of its owner, who may have higher permissions. If a SetUID program
is vulnerable to a buffer overflow, then an attack might include shellcode
that first executes the setuid() system call, and then spawns a shell. This
would result in the attacker gaining a shell with the permissions of the
exploited process’s owner, and possibly allow for full system compromise.

3.4. Application Program Security 157

Preventing Stack-Based Buffer Overflow Attacks

Many measures have been developed to combat buffer overflow attacks.
First, the root cause of buffer overflows is not the operating system it-
self, but rather insecure programming practices. Programmers must be
educated about the risks of insecurely copying user-supplied data into
fixed-size buffers, and ensure that their programs never attempt to copy
more information than can fit into a buffer. Many popular programming
languages, including C and C++, are susceptible to this attack, but other
languages do not allow the behavior that makes buffer overflow attacks
possible. To fix the previous example, the safer strncpy function should be
used, as in Code Fragment 3.6.

#include <stdio.h>

int main(int argc, char * argv[])
{

// Create a buffer on the stack
char buf[256];
// Only copies as much of the argument as can fit in the buffer
strncpy(buf, argv[1], sizeof(buf));
// Print the contents of the buffer
printf("%s\n",buf);
return 1;
}

Code Fragment 3.6: A C program protected against a stack buffer overflow.

Because of the dangers of buffer overflows, many operating systems
have incorporated protection mechanisms that can detect if a stack-based
buffer overflow has occurred (at which point the OS can decide how to deal
with this discovery). One such technique directly provides stack-smashing
protection by detecting when a buffer overflow occurs and at that point
prevent redirection of control to malicious code.

There are several implementations of this technique, all of which in-
volve paying closer attention to how data is organized in the method stack.
One such implementation, for instance, reorganizes the stack data allotted
to programs and incorporates a canary, a value that is placed between a
buffer and control data (which plays a similar role to a canary in a coal
mine). The system regularly checks the integrity of this canary value, and
if it has been changed, it knows that the buffer has been overflowed and it
should prevent malicious code execution. (See Figure 3.16.)

158 Chapter 3. Operating Systems Security

Buffer Other local Canary Return Other data

Normal (safe) stack configuration:

Buffer variables (random) address Other data

C t

Buffer overflow attack attempt:

Buffer
Corrupt
return

address
Attack codeOverflow data

Figure 3.16: Stack-based buffer overflow detection using a random canary.
The canary is placed in the stack prior to the return address, so that any
attempt to overwrite the return address also overwrites the canary.

Other systems are designed to prevent the attacker from overwriting
the return address. Microsoft developed a compiler extension called Point-
Guard that adds code which XOR-encodes any pointers, including the
return address, before and after they are used. As a result, an attacker
would not be able to reliably overwrite the return address with a location
that would lead to a valid jump. Yet another approach is to prevent
running code on the stack by enforcing a no-execution permission on the
stack segment of memory. If the attacker’s shellcode were not able to run,
then exploiting an application would be difficult. Finally, many operating
systems now feature address space layout randomization (ASLR), which
rearranges the data of a process’s address space at random, making it
extremely difficult to predict where to jump in order to execute code.

Despite these protection mechanisms, researchers and hackers alike
have developed newer, more complicated ways of exploiting buffer over-
flows. For example, popular ASLR implementations on 32-bit Windows
and Linux systems have been shown to use an insufficient amount of
randomness to fully prevent brute-force attacks, which has required ad-
ditional techniques to provide stack-smashing protection. The message is
clear, operating systems may have features to reduce the risks of buffer
overflows, but ultimately, the best way to guarantee safety is to remove
these vulnerabilities from application code. The primary responsibility
rests on the programmer to use safe coding practices.

3.4. Application Program Security 159

3.4.4 Heap-Based Buffer Overflow Attacks

Memory on the stack is either allocated statically, which is determined
when the program is compiled, or it is allocated and removed automatically
when functions are called and returned. However, it is often desirable to
give programmers the power to allocate memory dynamically and have it
persist across multiple function calls. This memory is allocated in a large
portion of unused memory known as the heap.

Dynamic memory allocation presents a number of potential problems
for programmers. For one, if programmers allocate memory on the heap
and do not explicitly deallocate (free) that block, it remains used and can
cause memory leak problems, which are caused by memory locations that
are allocated but are not actually being used.

From a security standpoint, the heap is subject to similar problems as
the stack. A program that copies user-supplied data into a block of memory
allocated on the heap in an unsafe way can result in overflow conditions,
allowing an attacker to execute arbitrary code on the machine. An example
of a vulnerable program can be found in Code Fragment 3.7.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[])
{

// Allocate two adjacent blocks on the heap
char *buf = malloc(256);
char *buf2 = malloc(16);
// Does not check length of buffer before copying argument
strcpy(buf, argv[1]);
// Print the argument
printf("Argument: %s\n", buf);
// Free the blocks on the heap
free(buf);
free(buf2);
return 1;
}

Code Fragment 3.7: A simple C program vulnerable to a heap overflow.

160 Chapter 3. Operating Systems Security

As with stack overflows, these problems can be mitigated by using
safe programming practices, including replacing unsafe functions such as
strcpy() with safer equivalents like strncpy(). (See Code Fragment 3.8.)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[])
{

// Allocate two adjacent blocks on the heap
char *buf = malloc(256);
char *buf2 = malloc(16);
// Only copies as much of the argument as can fit in the buffer
strncpy(buf, argv[1], 255);
// Print the argument
printf("Argument: %s\n", buf);
// Free the blocks on the heap
free(buf);
free(buf2);
return 1;
}

Code Fragment 3.8: A simple C program protected against a heap overflow.

Heap-based overflows are generally more complex than the more
prevalent stack-based buffer overflows and require a more in-depth under-
standing of how garbage collection and the heap are implemented. Unlike
the stack, which contains control data that if altered changes the execution
of a program, the heap is essentially a large empty space for data. Rather
than directly altering control, heap overflows aim to either alter data on
the heap or abuse the functions and macros that manage the memory on
the heap in order to execute arbitrary code. The specific attack used varies
depending on the particular architecture.

An Example Heap-Based Overflow Attack

As an example, let us consider an older version of the GNU compiler (GCC)
implementation of malloc(), the function that allocates a block of memory
on the heap. In this implementation, blocks of memory on the heap are
maintained as a linked list—each block has a pointer to the previous and
next blocks in the list. When a block is marked as free, the unlink() macro
is used to set the pointers of the adjacent blocks to point to each other,
effectively removing the block from the list and allowing the space to be

3.4. Application Program Security 161

reused. One heap overflow technique takes advantage of this system. If an
attacker provides user input to a program that unsafely copies the input to
a block on the heap, the attacker can overflow the bounds of that block and
overwrite portions of the next block. If this input is carefully crafted, it may
be possible to overwrite the linked list pointers of the next block and mark
it as free, in such a way that the unlink routine is tricked into writing data
into an arbitrary address in memory. In particular, the attacker may trick
the unlink routine into writing the address of his shellcode into a location
that will eventually result in a jump to the malicious code, resulting in the
execution of the attacker’s code.

One such location that may be written to in order to compromise a
program is known as .dtors. Programs compiled with GCC may feature
functions marked as constructor or destructor functions. Constructors are
executed before main(), and destructors are called after main() has returned.
Therefore, if an attacker adds the address of his shellcode to the .dtors
section, which contains a list of destructor functions, his code will be
executed before the program terminates. Another potential location that is
vulnerable to attacks is known as the global offset table (GOT). This table
maps certain functions to their absolute addresses. If an attacker overwrites
the address of a function in the GOT with the address of his shellcode and
this function is called, the program will jump to and execute the shellcode,
once again giving full control to the attacker.

Preventing Heap-Based Buffer Overflow Attacks

Prevention techniques for heap-based overflow attacks resemble those for
stack-based overflows. Address space randomization prevents the attacker
from reliably guessing memory locations, making the attack more difficult.
In addition, some systems make the heap nonexecutable, making it more
difficult to place shellcode. Newer implementations of dynamic memory
allocation routines often choose to store heap metadata (such as the pointers
to the previous and next blocks of heap memory) in a location separate from
the actual data stored on the heap, which makes attacks such as the unlink
technique impossible. Once again, the single most important preventive
measure is safe programming. Whenever a program copies user-supplied
input into a buffer allocated on the heap, care must be taken to ensure that
the program does not copy more data than that buffer can hold.

162 Chapter 3. Operating Systems Security

3.4.5 Format String Attacks

The printf family of C library functions are used for I/O, including printing
messages to the user. These functions are typically designed to be passed an
argument containing the message to be printed, along with a format string
that denotes how this message should be displayed. For example, calling
printf(“%s”,message) prints the message variable as a string, denoted by
the format string %s. Format strings can also write to memory. The %n
format string specifies that the print function should write the number of
bytes output so far to the memory address of the first argument to the
function.

When a programmer does not supply a format string, the input ar-
gument to the print function controls the format of the output. If this
argument is user-supplied, then an attacker could carefully craft an input
that uses format strings, including %n, to write to arbitrary locations in
memory. This could allow an attacker to seize control and execute arbitrary
code in the context of the program by overwriting a return address, function
pointer, etc. An example of a program with a format string vulnerability can
be found in Code Fragment 3.9, where the printf() function is called without
providing a format string.

#include <stdio.h>
int main(int argc, char * argv[])
{

printf("Your argument is:\n");
// Does not specify a format string, allowing the user to supply one
printf(argv[1]);
}

Code Fragment 3.9: A C program vulnerable to a format string bug.

Once again, the solution to this attack lies in the hands of the program-
mer. To prevent format string attacks, programmers should always provide
format strings to the printf function family, as in Code Fragment 3.10.

#include <stdio.h>
int main(int argc, char * argv[])
{

printf("Your argument is:\n");
// Supplies a format string
printf("%s",argv[1]);
}

Code Fragment 3.10: A C program protected against a format string bug.

3.4. Application Program Security 163

3.4.6 Race Conditions

Another programming error that can lead to compromise by malicious
users is the introduction of what is known as a race condition. A race con-
dition is any situation where the behavior of the program is unintentionally
dependent on the timing of certain events.

A classic example makes use of the C functions access() and open().
The open() function, used to open a file for reading or writing, opens
the specified file using the effective user ID (rather than the real user ID)
of the calling process to check permissions. In other words, if a SetUID
program owned by the root user is run by an ordinary user, that program
can successfully call open() on files that only the root user has permission
to access. The access() function checks whether the real user (in this case,
the user running the program) has permission to access the specified file.

Suppose there were a simple program that takes a filename as an argu-
ment, checks whether the user running the program has permission to open
that file, and if so, reads the first few characters of the file and prints them.
This program might be implemented as in Code Fragment 3.11.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <fcntl.h>
int main(int argc, char * argv[])
{

int file;
char buf[1024];
memset(buf, 0, 1024);
if(argc < 2) {

printf("Usage: printer [filename]\n");
exit(−1);
}
if(access(argv[1], R OK) != 0) {

printf("Cannot access file.\n");
exit(−1);
}
file = open(argv[1], O RDONLY);
read(file, buf, 1023);

close(file);
printf("%s\n", buf);
return 0;
}

Code Fragment 3.11: A C program vulnerable to a race condition.

164 Chapter 3. Operating Systems Security

The Time of Check/Time of Use Problem

There is a race condition in the above implementation. In particular, there
is a tiny, almost unnoticeable time delay between the calls to access()
and open(). An attacker could exploit this small delay by changing the
file in question between the two calls. For example, suppose the attacker
provided /home/joe/dummy as an argument, an innocent text file that the
attacker can access. After the call to access() returns 0, indicating the
user has permission to access the file, the attacker can quickly replace
/home/joe/dummy with a symbolic link to a file that he does not have
permission to read, such as /etc/passwd.

Next, the program will call open() on the symbolic link, which will be
successful because the program is SetUID root and has permission to open
any files accessible to the root user. Finally, the program will dutifully read
and print the contents of the file.

Note that this type of attack could not be done manually; the time
difference between two function calls is small enough that no human would
be able to change the files fast enough. However, it would be possible
to have a program running in the background that repeatedly switches
between the two files—one legitimate and one just a symbolic link—and
runs the vulnerable program repeatedly until the switch occurred in exactly
the right place.

In general, this type of vulnerability is known as a Time of Check/Time
of Use (TOCTOU) problem. Any time a program checks the validity and
authorizations for an object, whether it be a file or some other property,
before performing an action on that object, care should be taken that these
two operations are performed atomically, that is, they should be performed
as a single uninterruptible operation. Otherwise, the object may be changed
in between the time it is checked and the time it is used. In most cases, such
a modification simply results in erratic behavior, but in some, such as this
example, the time window can be exploited to cause a security breach.

To safely code the example above, the call to access() should be com-
pletely avoided. Instead, the program should drop its privileges using
seteuid() before calling open(). This way, if the user running the program
does not have permission to open the specified file, the call to open() will
fail. A safe version of the program can be found in Code Fragment 3.12.

3.4. Application Program Security 165

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <fcntl.h>
int main(int argc, char * argv[])
{

int file;
char buf[1024];
uid t uid, euid;
memset(buf, 0, 1024);
if(argc < 2) {

printf("Usage: printer [filename]\n");
exit(−1);
}
euid = geteuid();
uid = getuid();
/* Drop privileges */
seteuid(uid);
file = open(argv[1], O RDONLY);
read(file, buf, 1023);
close(file);
/* Restore privileges */
seteuid(euid);
printf("%s\n", buf);
return 0;
}

Code Fragment 3.12: A simple C program that is protected against a race
condition.

166 Chapter 3. Operating Systems Security

3.5 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-3.1 How can multitasking make a single processor look like it is run-
ning multiple programs at the same time?

R-3.2 Give an example of three operating systems services that do not
belong in the kernel?

R-3.3 If a process forks two processes and these each fork two processes,
how many processes are in this part of the process tree?

R-3.4 What is the advantage of booting from the BIOS instead of booting
the operating system directly?

R-3.5 Can a process have more than one parent? Explain.

R-3.6 Describe two types of IPC. What are their relative benefits and
weaknesses?

R-3.7 Why would it be bad to mix the stack and heap segments of
memory in the same segment?

R-3.8 Describe the difference between a daemon and a service.

R-3.9 What are the benefits of virtual memory?

R-3.10 Why should a security-conscious Windows user inspect processes
with Process Explorer instead of Task Manager?

R-3.11 What is the purpose of salting passwords?

R-3.12 If a password is salted with a 24-bit random number, how big is the
dictionary attack search space for a 200,000 word dictionary?

R-3.13 Eve has just discovered and decrypted the file that associates each
userid with its 32-bit random salt value, and she has also discov-
ered and decrypted the password file, which contains the salted-
and-hashed passwords for the 100 people in her building. If she has
a dictionary of 500,000 words and she is confident all 100 people
have passwords from this dictionary, what is the size of her search
space for performing a dictionary attack on their passwords?

R-3.14 Suppose farasi is a member of group hippos in a system that uses
basic Unix permissions. He creates a file pool.txt, sets its group
as hippos and sets its permissions as u=rw,g=. Can farasi read
pool.txt?

3.5. Exercises 167

R-3.15 Dr. Eco claims that virtual machines are good for the environment.
How can he justify that virtualization is a green technology?

R-3.16 Alice, who uses a version of Unix, requires a better program to
manage her photos. She wants Bob to code this program for her.
However, she does not want Bob to be able to see some confidential
files she has in her account (for example, the solutions of some
homework). On the other hand, Bob wants to make sure that Alice
does not read his code, since this will probably be her CS032 final
project. Explain how this can be achieved by using the setuid and
chmod functions provided by UNIX. Also, assume for this question
only (regardless of real systems’ behavior), that a user cannot revert
to the real UID after using the effective UID that was set by the
setuid feature. Specifically consider the fact that Bob could embed
code in his program to transfer data it has access to, to a public
folder and/or a web server.

R-3.17 Is it possible to create a symbolic link to a symbolic link? Why or
why not?

R-3.18 Why is it pointless to give a symbolic link more restrictive access
privileges than the file it points to?

R-3.19 Describe the main differences between advanced file permissions
in Linux and Windows NTFS. Give an example to illustrate each
difference.

R-3.20 Dr. Blahbah claims that buffer overflow attacks via stack smashing
are made possible by the fact that stacks grow downwards (to-
wards smaller addresses) on most popular modern architectures.
Therefore, future architectures should ensure that the stack grows
upwards; this would provide a good defense against buffer over-
flow. Do you agree or disagree? Why?

R-3.21 Why is it important to protect the part of the disk that is used for
virtual memory?

R-3.22 Why is it unsafe to keep around the C:\hiberfil.sys file even after a
computer has been restored from hibernation?

Creativity

C-3.1 Bob thinks that generating and storing a random salt value for
each userid is a waste. Instead, he is proposing that his system
administrators use a SHA-1 hash of the userid as its salt. Describe
whether this choice impacts the security of salted passwords and
include an analysis of the respective search space sizes.

168 Chapter 3. Operating Systems Security

C-3.2 Alice has a picture-based password system, where she has each
user pick a set of their 20 favorite pictures, say, of cats, dogs, cars,
etc. To login, a user is shown a series of pictures in pairs—one on
the left and one on the right. In each pair, the user has to pick the
one that is in his set of favorites. If the user picks the correct 20
out of the 40 he is shown (as 20 pairs), then the system logs him in.
Analyze the security of this system, including the size of the search
space. Is it more secure than a standard password system?

C-3.3 Charlie likes Alice’s picture-password system of the previous exer-
cise, but he has changed the login so that it just shows the user 40
different pictures in random order and they have to indicate which
20 of these are from their set of favorites. Is this an improvement
over Alice’s system? Why or why not?

C-3.4 Dr. Simplex believes that all the effort spent on access control
matrices and access control lists is a waste of time. He believes
that all file access permissions for every file should be restricted
to the owner of that file, period. Describe at least three scenarios
where he is wrong, that is, where users other than a file’s owner
need some kind of allowed access privileges.

C-3.5 On Unix systems, a convenient way of packaging a collection of
files is a SHell ARchive, or shar file. A shar file is a shell script
that will unpack itself into the appropriate files and directories.
Shar files are created by the shar command. The implementation
of the shar command in a legacy version of the HP-UX operating
system created a temporary file with an easily predictable filename
in directory /tmp. This temporary file is an intermediate file that
is created by shar for storing temporary contents during its execu-
tion. Also, if a file with this name already exists, then shar opens
the file and overwrites it with temporary contents. If directory /tmp
allows anyone to write to it, a vulnerability exists. An attacker can
exploit such a vulnerability to overwrite a victim’s file. (1) What
knowledge about shar should the attacker have? (2) Describe the
command that the attacker issues in order to have shar overwrite
an arbitrary file of a victim. Hint: the command is issued before
shar is executed. (3) Suggest a simple fix to the shar utility to
prevent the attack. Note that this is not a setuid question.

C-3.6 Java is considered to be “safe” from buffer overflows. Does that
make it more appropriate to use as a development language when
security is a concern? Be sure and weigh all of the risks involved in
product development, not just the security aspects.

C-3.7 Dr. Blahbah has implemented a system with an 8-bit random ca-
nary that is used to detect and prevent stack-based buffer overflow

3.5. Exercises 169

attacks. Describe an effective attack against Dr. Blahbah’s system
and analyze its likelihood of success.

C-3.8 Consider the following piece of C code:

int main(int argc, char *argv[])
{
char continue = 0;
char password[8];
strcpy(password, argv[1]);
if (strcmp(password, ”CS166”)==0)
continue = 1;
if (continue)
{
∗login();
}
}

In the above code, ∗login() is a pointer to the function login()
(In C, one can declare pointers to functions which means that the
call to the function is actually a memory address that indicates
where the executable code of the function lies). (1) Is this
code vulnerable to a buffer-overflow attack with reference to the
variables password[] and continue? If yes, describe how an attacker
can achieve this and give an ideal ordering of the memory cells
(assume that the memory addresses increase from left to right)
that correspond the variables password[] and continue of the code
so that this attack can be avoided. (2) To fix the problem, a security
expert suggests to remove the variable continue and simply use
the comparison for login. Does this fix the vulnerability? What
kind of new buffer overflow attack can be achieved in a multiuser
system where the login() function is shared by a lot of users (both
malicious and and nonmalicious) and many users can try to log
in at the same time? Assume for this question only (regardless
of real systems’ behavior) that the pointer is on the stack rather
than in the data segment, or a shared memory segment. (3) What
is the existing vulnerability when login() is not a pointer to the
function code but terminates with a return() command? Note that
the function strcpy does not check an array’s length.

C-3.9 In the StackGuard approach to solving the buffer overflow prob-
lem, the compiler inserts a canary value on the memory location
before the return address in the stack. The canary value is ran-

170 Chapter 3. Operating Systems Security

domly generated. When there is a return from the function call, the
compiler checks if the canary value has been overwritten or not.
Do you think that this approach would work? If yes, please explain
why it works; if not, please give a counterexample.

C-3.10 Another approach to protecting against buffer overflows is to rely
on address space layout randomization (ASLR). Most implementa-
tions of ASLR offset the start of each memory segment by a number
that is randomly generated within a certain range at runtime. Thus,
the starting address of data objects and code segments is a random
location. What kinds of attacks does this technique make more
difficult and why?

Projects

P-3.1 Write a program in pseudocode that acts as a guardian for a file, al-
lowing anyone to append to the file, but to make no other changes
to it. This may be useful, e.g., to add information to a log file.
Your program, to be named append, should take two strings file1
and file2 as arguments, denoting the paths to two files. Operation
append(String file1, String file2) copies the contents of file1 to the
end of file2, provided that the user performing the operation has
read permission for file1 and file2. If the operation succeeds, 0 is
returned. On error, −1 is returned.
Assume that the operating system supports the setuid mechanism
and that append is a setuid program owned by a user called
guardian. The file to which other files get appended (file2) is also
owned by guardian. Anyone can read its contents. However, it can
be written only by guardian. Write your program in pseudocode
using the following Java-style system calls:
(1) int open(String path to file, String mode) opens a file in a given
mode and returns a positive integer that is the descriptor of the
opened file. String mode is one of READ ONLY or WRITE ONLY.
(2) void close(int file descriptor) closes a file given its descriptor.
(3) byte[] read(int file descriptor) reads the content of the given
file into an array of bytes and returns the array. (4) void write(int
file descriptor, byte[] source buffer) stores a byte array into a file,
replacing the previous content of the file. (5) int getUid() gets the
real user ID of the current process. (6) int getEuid() gets the effective
user ID of the current process. (7) void setEuid(int uid) sets the
effective user ID of the current process, where uid is either the real
user ID or the saved effective user ID of the process.

3.5. Exercises 171

Error conditions that occur in the execution of the above system
calls (e.g., trying to open a file without having access right to it or
using a nonexistent descriptor) trigger exception SystemCallFailed,
which should be handled by your program. Note that you do not
need to worry about buffer overflow in this question.

P-3.2 Implement a system that implements a simple access control list
(ACL) functionality, which gives a user the ability to grant file
permissions on a user-by-user basis. For example, one can create
a file that is readable by joeuser and janeuser, but only writable
by janeuser. The operations on the ACL are as follows. (1) set-
facl(path, uid, uid mode, gid, gid mode) sets a user with uid and/or
a group with gid to the ACL for the object (file or directory) spec-
ified by path. If the user/group already exists, the access mode is
updated. If only (uid, uid mode) or (gid, gid mode) is to be set, null
is used for the unset arguments. (2) getfacl(path) obtains the entire
access control list of the file path. (3) access(uid, access mode,
path) determines whether a user with uid can access the object
stored at path in mode access mode. This method returns a
boolean. path contains the full path to a file or a directory, e.g.,
/u/bob/cs166/homework.doc. You can use groups username to find
out the groups that username belongs to. One way to accomplish
this ACL would be with a linked list; your solution should be
more efficient with respect to the number of users, groups, and
files. Describe how to implement the operations with your data
structure. You have to consider permissions associated with the
parent directories of a file. For this, you are given a method getPar-
ent(full path) that takes a path to a file or directory, and returns the
parent directory.

P-3.3 In a virtual machine, install the Linux operating system, which
supports the capability-based access control (capabilities are built
into the Linux kernel since the kernel version 2.6.24). Use capabil-
ities to reduce the amount of privileges carried by certain SetUID
programs, such as passwd and ping.

P-3.4 In a virtual machine, install a given privileged program (e.g., a
SetUID program) that is vulnerable to the buffer overflow attack.
Write a program to exploit the vulnerability and gain the ad-
minstrator privilege. Try different attacking schemes, one using
shellcode, and the other using the return-to-libc technique. It
should be noted that many operating systems have multiple built-
in countermeasures to protect them against the buffer overflow
attack. First, turn off those protections and try the attack; then turn

172 Chapter 3. Operating Systems Security

them back on and see whether these protections can be defeated
(some countermeasures can be easily defeated).

P-3.5 In a virtual machine, install a given privileged program (e.g., a
SetUID program) that is vulnerable to the format-string attack.
Write a program to exploit the vulnerability and that will crash
the privileged program, print out the value of an internal variable
secret to the user, and modify the value of this secret variable.
Modify the source code of the vulnerable program so it can defeat
the format string attack.

P-3.6 In a virtual machine, install a given privileged program (e.g., a
SetUID program) that is vulnerable to the race condition attack.
Write a program to exploit the vulnerability and gain adminstrator
privilege. Modify the source code of the vulnerable program so it
can defeat the race condition attack.

P-3.7 Write a term paper describing how buffer overflows are used as
vectors for many computer attacks. Discuss how they enable
different kinds of attacks and describe how different software en-
gineering practices and languages might encourage or discourage
buffer-overflow vulnerabilities.

Chapter Notes

Operating systems are discussed in detail in the textbooks by Doeppner [27] and
Silberschatz, Galvin and Gagne [94]. Much of the content in this chapter on Unix-
based systems, especially Linux, draws heavily on open source documentation,
which can be accessed at http://www.manpagez.com/. Grünbacher describes in
detail Linux ACLs and the file access control algorithm based on ACLs [37].
Reference material on the Windows API can be found in the Microsoft Developer
Network [60]. A classic introduction to stack-based buffer overflows is given
by Aleph One [1]. Lhee and Chapin discuss buffer overflow and format string
exploitation [54]. A method for protecting against heap smashing attacks is
presented by Fetzer and Xiao [33]. The canary method for defending against
stack smashing attacks is incorporated in the StackGuard compiler extension by
Cowan et al. [20]. Address space randomization and its effectiveness in preventing
common buffer overflow attacks is discussed by Shacham et al. [89]. Project P-3.1
is from Tom Doeppner.

